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Abstract 

Artificial intelligence (AI) is altering the world of medicine. Given the rapid advances in technology, computers are 
now able to learn and improve, imitating humanoid cognitive function. AI applications currently exist in various medi‑
cal specialties, some of which are already in clinical use. This review presents the potential uses and limitations of AI in 
arthroplasty to provide a better understanding of the existing technology and future direction of this field.

Recent literature demonstrates that the utilization of AI in the field of arthroplasty has the potential to improve patient 
care through better diagnosis, screening, planning, monitoring, and prediction. The implementation of AI technology 
will enable arthroplasty surgeons to provide patient‑specific management in clinical decision making, preoperative 
health optimization, resource allocation, decision support, and early intervention. While this technology presents a 
variety of exciting opportunities, it also has several limitations and challenges that need to be overcome to ensure its 
safety and effectiveness.
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Background
Artificial Intelligence (AI) is a subfield of computer sci-
ence that uses computers to emulate human cognitive 
functions and carry out tasks that can match or exceed 
human performance [1, 2]. Traditionally, specific com-
puter codes were required to explicitly instruct machines 
how to process data and make decisions. Through 
Machine Learning (ML) algorithms, computers can learn 
and improve from experience without exact instructions 
by using large sets of data inputs and outputs to recog-
nize repetitive patterns. This subset of AI emphasizes the 
learning aspect of computer intelligence to create auton-
omous resolutions [1, 3, 4].

Deep Learning (DL) is a more advanced and complex 
form of ML that mimics the neuronal connections of the 
brain by creating an Artificial Neural Network (ANN) 
[1, 2]. This algorithm can learn from unstructured and 
unlabeled inputs without supervision and segregate data 
input from low relevance variables for the prediction 

of interest. Deep Neural Network (DNN), which con-
tains multiple hierarchical levels of ANN, is required to 
improve data predictions and allow the development of 
models without explicitly programmed directions [1–3]. 
Convolutional Neural Network (CNN) is the other form 
of DL which is used for computer vision tasks including 
medical image analysis [5].

The application of AI has expanded prominently in 
the medical field due to advances in computing power, 
learning algorithms, data storage, and the availability of 
large-high-quality data sourced from electronic medical 
records and wearable health trackers [1, 2]. Although its 
adoption is still in early phases, AI has been extensively 
used across many fields in medicine such as radiology [6, 
7], cardiology [8–11], dermatology [12–15], ophthalmol-
ogy [16, 17], neurology [18, 19], oncology [20, 21], gastro-
enterology [22, 23], and respiratory medicine [24]. Some 
examples of clinical applications that have been approved 
by the US Food and Drug Administration (FDA) include 
Arterys for cardiac magnetic resonance image analy-
sis, Idx for detection of diabetic retinopathy, and Mam-
moScreen for breast cancer screening [25, 26]. In fact, 
the number of AI/ML-based medical devices approved 
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by the FDA and Conformité Européenne (CE) mark in 
Europe increased significantly from 9 and 13 in 2015 to 
77 and 100 in 2019, respectively [26].

In the field of orthopedics, the influence of AI has also 
grown rapidly for the past two decades [4]. Currently, 
this technology has the potential to be utilized in various 
areas such as image-recognition diagnostics, surgical risk 
prediction, generating patient-specific payment models, 
augmenting clinical decision making, and outcome pre-
diction [2]. Thus, AI enables surgeons to select the ideal 
patient for the best surgical outcomes, develop a patient-
specific surgical plan, and prepare for patients who are at 
high risk of complications [27].

This article reviews the current applications of AI in 
the field of arthroplasty and the evidence supporting its 
utilization in the clinical setting.

Diagnostic tool
Computer-aided diagnosis could be utilized to help phy-
sicians make decisions because of its objective nature 
and a high degree of accuracy. CNN has demonstrated 
breakthroughs in a variety of general image recognition 
applications. The accuracy of these applications is at 
near-human levels and has the potential to outperform 
human experts in the future [28]. These models can be 
used to aid physicians to diagnose osteoarthritis, assess 
the severity of osteoarthritis, or even detect osteoarthri-
tis in presymptomatic individuals and predict the need 
for joint arthroplasty [28–34].

Diagnosis and progression of osteoarthritis (OA) based 
on knee radiograph can be made by CNN. Several algo-
rithms have been proposed to detect knee OA based on 
knee radiographs. By using plain radiographs from the 
OsteoArthritis Initiative database, Brahim et al demon-
strated the ability of their method to detect OA, even at 
an early stage [35]. Another DL model developed by Xue 
et al was able to generate a diagnosis of OA automati-
cally using a radiograph without human involvement. 
This algorithm could accurately identify radiograph fea-
tures that are associated with hip OA such as joint space 
narrowing and osteophytes, allowing it to function like a 
radiologist with 10 years of experience [29]. Both Antony 
et al and Tiulpin et al presented algorithms that were able 
to automatically diagnose and classify the severity of knee 
OA from plain radiographs [28, 32]. Most recently, the 
model proposed by Leung et al not only detected knee 
OA but also predicted the development of OA which led 
to eventual total knee arthroplasty (TKA) within 9 years 
[31].

In a different application, early diagnosis of OA in pre-
symptomatic individuals may allow initiation of disease-
modifying therapies to modify the course of the disease. 
Kundu et al demonstrated the use of AI to detect OA 

3 years before the individuals became symptomatic. They 
used 3D Transport-Based Morphometry to identify water 
distribution patterns in cartilage tissue that is captured 
by MRI [30]. In addition, Hirvasniemi et al used ML to 
predict incidents of radiographic hip OA or TKA over 
10 years. They utilized bone texture analysis of proximal 
femur and acetabulum from plain pelvic radiographs to 
predict incidents of radiographic hip OA [33].

The recent technological advances in AI have proven 
that image recognition applications can detect pros-
thetic loosening. This is particularly useful as aseptic 
implant loosening remains one of the main causes of fail-
ure in arthroplasty. Shah et al showed that loosening of 
implants could be detected on plain radiographs by ML 
with an accuracy of 95.6%. This progress could assist sur-
geons in diagnosing the condition without the need for 
expensive imaging modalities such as fluorodeoxyglu-
cose-positron emission tomography (FDG-PET scans), 
bone scans, magnetic resonance imaging (MRI), and 
arthrograms, which have not been demonstrated to sig-
nificantly improve diagnostic accuracy [36].

Patient‑specific payment
The use of AI to preoperatively predict the length of stay 
in the hospital (LOS) and payments for patients under-
going arthroplasty based on patient-specific factors can 
help optimize value-based care and enable the develop-
ment of a patient-specific pricing benchmark for govern-
ments and insurance companies [37–39]. By accurately 
predicting the LOS of patients, decision making and 
inpatient bed assignment can be simplified so that medi-
cal resources can be allocated to the maximum [40]. Doc-
tors can also develop recovery plans quickly and provide 
better services as they can adjust patient expectations 
and provide early interventions [38]. High-cost predic-
tions allow hospitals to channel additional resources to 
at-risk patients, to prevent anticipated complications and 
reduce overall costs [37].

Several studies have demonstrated the ability of ML 
to predict LOS and hospitalization costs for both TKA 
and total hip arthroplasty (THA) [37, 39, 41, 42]. ML is 
proven to provide predictions with fair to excellent con-
struct validity, reliability, and responsiveness before pri-
mary TKA and THA [39, 41, 42].

Li et al conducted a study to compare the accuracy of 
the ML model with two logistic regression models in pre-
dicting LOS of patients undergoing primary unilateral 
TKA. They found that the ML algorithm had better accu-
racy in predicting LOS [38]. Another similar study has 
also demonstrated better predictive performance of their 
ML models compared to conventional methods, includ-
ing logistic regression [40].
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Preoperative evaluation
AI can be used during preoperative screening to iden-
tify high-risk patients thereby allowing doctors to pre-
pare preventive measures. Jo et al conducted the first 
study on the use of ML to predict the transfusion risk 
after TKA while Karhade et al performed the first 
investigation into the use of ML in predicting the risk 
of having prolonged postoperative opioid prescriptions 
in patients undergoing THA. Both studies have been 
validated and showed good performance [43, 44].

Novel use of AI has been proposed for the preopera-
tive evaluation of revision arthroplasty. While accurate 
identification of the manufacturer and type of implant 
is required for preoperative planning of revision arthro-
plasty, it is estimated that surgeons are unable to recog-
nize the implant preoperatively and intraoperatively in 
about 10 and 2% of cases, respectively. Inability to iden-
tify implants can lead to unpreparedness which may 
contribute to increased surgical time, perioperative 
morbidity, and overall healthcare costs [45–47]. Deep 
learning has been shown its ability to recognize implant 
manufacturer and design in hip and knee arthroplasty 
[45–49].

A recent study by Karnuta et al showed that their ML 
algorithm was able to distinguish between 9 unique 
knee arthroplasty implants including TKA, Unicondy-
lar Knee Arthroplasty, and Distal Femoral Replacement 
from four leading manufacturers with 99% accuracy 
simply by evaluating anteroposterior (AP) radiographs 
[46]. In hip arthroplasty, deep learning algorithms are 
also capable of recognizing THA implants based on AP 
radiograph. Although the classification is based solely 
on identifying the design characteristics of the femoral 
stem, studies have found the results to be very accurate, 
even reaching an accuracy rate of 99.6 to 100% [45, 47, 
49, 50].

Jodeiri et al estimated Pelvic Sagittal Inclination (PSI) 
from preoperative plain radiographs to augment the posi-
tion of the acetabular component, eliminating the need 
for a Computed Tomography (CT) scan. PSI is increas-
ingly being recognized to play a crucial role in acetabular 
component positioning as the optimal anteversion and 
inclination angle of the acetabular cup can reduce the 
risk of dislocation or impingement after THA. This study 
demonstrated encouraging results, with an accuracy rate 
of 80%. Future development of this model will enable the 
recognition of individual dynamic changes of PSI to ena-
ble patient-specific placement of the acetabular compo-
nent in patients undergoing THA [51].

The application of these novelties during preoperative 
evaluation has the potential to assist surgeons in making 
clinical decisions, providing patient-specific planning, 
and improving outcomes.

Outcome prediction
The potential ability of ML to predict patient outcomes 
after arthroplasty has been demonstrated by several 
authors [52–56]. Prediction of outcomes may facilitate 
the shared decision-making process between orthopedic 
surgeons and patients, particularly to decide whether the 
procedures will meet the patient’s expectations [53–56]. 
Furthermore, early identification of patients at risk of 
not having significant changes in postoperative Patient-
Reported Outcome Measures (PROMs) may necessitate 
closer postoperative patient follow-up and optimize deci-
sion support before surgery [52].

Several studies focused on achieving minimal clinically 
important difference (MCID) after surgery, which refers 
to the improvement of PROMs necessary for a patient 
to consider the intervention beneficial or meaningful. 
Supervised machine learning algorithms developed by 
Fontana et al were shown to have fair to good ability to 
predict 2-year postsurgical MCID for general and joint-
specific health PROMs [52]. Recent studies by Kunze et 
al and Harris et al also found that ML was able to pre-
dict the MCID of patients undergoing THA and TKA, 
respectively, so that it could help in optimizing preopera-
tive health, improving patient selection, education, and 
satisfaction [55, 56].

Another outcome measure used to evaluate the efficacy 
and value of the intervention is postoperative patient sat-
isfaction [54, 57]. Farooq et al found that compared to 
statistical models, ML algorithm had greater accuracy 
in predicting satisfaction after TKA [57]. Another study 
conducted by Kunze et al in patients undergoing TKA 
also showed that ML had good discriminatory capacity 
and superiority over standard logistic regression to iden-
tify patients at greatest risk for dissatisfaction. Accurate 
prediction of patient dissatisfaction following primary 
TKA may allow for preoperative health optimization and 
improved patient-doctor discussions [54].

Shohat et al. used ML to assist in treatment decision 
making of acute prosthetic joint infection (PJI). Debride-
ment, antibiotics, and implant retention (DAIR) proce-
dures have low morbidity with unpredictable results and 
variable failure rates. The authors developed an algorithm 
that could accurately predict the success of DAIR based 
on patient’s clinical presentations, comorbidities, physi-
cal examination, and laboratory results [58].

Shat et al did a retrospective cohort study of 89,986 
patients undergoing primary THA. They developed 
an ML algorithm and compared their model with logistic 
regression and standard benchmark ML models in pre-
dicting major complications after THA, including infec-
tion, venous thromboembolism, cardiac complication, 
and pulmonary complication. Their model showed supe-
rior risk prediction compared to logistic regression. The 
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accurate prognostic information obtained by this algo-
rithm may facilitate decision making before surgery and 
augment postoperative clinical care [59].

Postoperative evaluation and monitoring
Newer technology targeted at improving rehabilita-
tion following THR and TKR provides a more objective 
outcome measure as compared to traditional patient-
reported activity questionnaires. Wearable devices can 
record the movement profile of patients postoperatively, 
which can be used to assess their functional recovery [60, 
61]. Continuous data from the device can be analyzed by 
ML algorithms which can lead to reliable measurement 
of functional outcomes after arthroplasty [62].

Ramkumar et al analyzed perioperative data collected 
by patient smartphones and wearable knee devices of 
patients undergoing TKA. Analysis of the data taken 
pre- and post-surgery including mobility (steps per day), 
range of motion (maximum knee flexion), home exercise 
compliance, opioid consumption, and PROMs, demon-
strated that the remote patient monitoring enabled the 
authors to evaluate the mobility and rehabilitation com-
pliance of patients after TKA. By analyzing data collected 
through advances in technology with ML algorithms, 
they proposed that these applications can help surgeons 
to identify potential causes of unfavorable outcomes [62].

Polus et al did a prospective study investigating the 
recovery of 72 patients undergoing primary THA for 
end-stage OA. All patients were instrumented with a 
wearable sensor system. This study showed that ML 
could predict the fall risk in post-THA patients by col-
lecting objective functional data using wearable devices. 
They succeeded in predicting the risk of fall at 6  weeks 
after  surgery with a high level of accuracy. By grouping 
high and low fall risk patients, fall prevention measures 
can be enhanced for the high-risk group, whilst an accel-
erated recovery program can be implemented for the 
low-risk group [63].

As another example, Rouzrokh et al used DL to auto-
matically measure the acetabular component angles on 
postoperative radiographs. After building their algorithm 
based on two cohorts of 600 AP pelvis and 600 cross-
table lateral hip postoperative radiographs, they found 
that their model was highly accurate so that it can be uti-
lized not only in research settings but also in clinical set-
tings [64].

AI for surgical robotics
Robotic-assisted surgery enhances the surgeon’s ability 
to perform more precise and accurate procedures more 
consistently with more patient-specific plans [65]. Many 
surgical robotic platforms have emerged in the last few 
decades. Despite progress, current robotic platforms are 

incapable of performing autonomous tasks and mak-
ing cognitive decisions similar to those of humans [66]. 
AI may improve the ability of the surgical robotic sys-
tem to perceive complex in vivo environments, conduct 
decision making, predict, and perform desired tasks with 
increased precision, safety, and efficiency, either under or 
without supervision from human control [67, 68].

The application of AI in robotic surgeries may reduce 
human errors and operative times [69]. Future surgical 
robots are expected to be able to apprehend and under-
stand complex environments, perform real-time decision 
making, and perform desired tasks with increased preci-
sion, safety, and efficiency [68]. Recent study by Li et al 
used AI for the first time to guide the 3D reconstruction 
of CT data of lower limbs for facilitating robotic-assisted 
TKA. They used CT data of 200 lower limbs for AI-based 
3D model construction and CT data of 20 lower limbs for 
verification. The result showed that the performance of 
AI-guided 3D reconstruction for robotic-assisted TKA 
was similar to that of the operator-based approach [70].

Clinical decision making and future directions
Advances in technology and the use of AI provide oppor-
tunities to provide data-driven, high-performance medi-
cine that can rapidly improve the field of arthroplasty 
[71]. Leveraging its potential to handle and optimize 
highly complex datasets, a future where the positive 
impact of this technology in healthcare is already visible 
[72]. Due to the ability to process large amounts of com-
plex data to guide and predict outcomes, AI platforms 
have the potential to provide decision support to doctors, 
patients, and insurance companies [27, 72].

Arthroplasty surgeons will be able to select ideal 
patients for surgery, create patient-specific surgical plans, 
predict clinical outcomes and implant survival, and iden-
tify patients at high risk of complications [27]. In addi-
tion, the potential of AI to forecast treatment episodes 
offers unique predictive possibilities for generating 
tiered bundle pay models specific to patient complexity 
before arthroplasty procedures, enabling fair arbitration 
between surgeons, hospitals, and insurance companies 
[41]. AI’s ability to predict outcomes will facilitate arthro-
plasty surgeons in discussing possible surgery outcomes, 
making optimal joint decisions with patients before sur-
gery, and prioritizing resources for postoperative moni-
toring [52].

Advanced algorithms offer an avenue to learn and adapt 
to different datasets including those relating to a patient’s 
physical and psychosocial health and well-being from dif-
ferent populations and practices. Highly sophisticated 
analysis of a wide range of data is capable of generating 
impactful metrics that can be used to aid in better deci-
sion-making processes [73]. Jayakumar et al conducted a 



Page 5 of 7Purnomo et al. Arthroplasty            (2021) 3:37  

randomized clinical trial of 129 patients with knee pain 
associated with OA. They demonstrated statistically sig-
nificant improvement in decision quality, level of shared 
decision making, patient satisfaction, and functional out-
comes in patients using an AI-enabled decision aid. The 
results of this study suggest that AI-enabled patient deci-
sion assistance can provide a personalized, data-driven 
approach and improve shared decision making in the 
management of knee osteoarthritis [74].

Given the rapid technological advances, the widespread 
application of AI in the field of arthroplasty is expected to 
provide personalized health care by improving diagnosis, 
clinical decision making, patient care, and outcomes for 
specific patients.

AI limitations and challenges
Apart from various interesting and seemingly promising 
applications, AI also has its limitations. The development 
of ML algorithms requires large amounts of data. ML 
developed using data from one setting cannot be used 
immediately by other practice settings in other locations 
because the training data may not representative of the 
population [75]. Algorithms with non-generalized data 
can lead to bias, possibly providing inaccurate recom-
mendations for minority subgroups for which training 
data are less inclusive [76, 77]. To prevent algorithmic 
bias, ML should be designed according to the global 
community. In addition, clinical validation must be car-
ried out using a representative population of the area 
where this algorithm will be used [77].

Additional local training data may be required for algo-
rithm adaptation in new populations [75, 77]. Hospitals 
or clinics with too little data will face problems training 
the algorithm optimally so that sharing data with each 
other is necessary to achieve successful adoption of AI in 
healthcare at scale [76]. In data sharing, privacy and data 
protection issues can be a problem. AI developers must 
protect personal information and any other information 
beyond the use of a doctor-patient relationship that may 
harm the patient, such as the impact on health or other 
insurance premiums, job opportunities, or even personal 
relationships [76]. Moreover, there are also unique chal-
lenges and risks associated with cyber security threats 
[76, 78].

Transparency and trust are other issues. A lack of 
transparency in AI makes accountability and liability 
problematic [76, 79]. Some ML algorithms have a black-
box phenomenon in which a logical explanation of how 
the output is generated is unknown [80]. The inability to 
explain why and how an algorithm derives certain deci-
sions makes implementing AI difficult [77]. Explainable 
and interpretable algorithms are necessary not only to 

detect biases but also to facilitate transparent and trust-
worthy AI systems [76, 77].

Conclusion
The adoption of AI in healthcare is inevitable. Currently, 
many studies are demonstrating the use of AI in various 
fields of arthroplasty. The application of ML in clinical 
practice will allow physicians to improve clinical deci-
sion making, anticipate problems, allocate resources, and 
provide personalized early intervention for each patient. 
AI has the potential to increase surgeon effectiveness and 
reduce human errors. Shortly, this technology will surely 
help arthroplasty surgeons in various ways to improve 
patient outcomes. While presenting a variety of excit-
ing opportunities, the application of AI is not without 
limitations, making the adoption of this technology into 
clinical settings problematic. These challenges need to 
be addressed to ensure the safe and effective use of this 
technology.
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