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Abstract 

Objective: This study aimed to establish a deep learning method based on convolutional networks for the prelimi-
nary study of the pathological diagnosis of prosthetic joint infections (PJI).

Methods: We enrolled 20 revision patients after joint replacement from the Department of Orthopedics, the First 
Medical Center, General Hospital of the People’s Liberation Army, from January 2021 to January 2022 (10 of whom 
were confirmed to be infected against 2018 ICM criteria, and the remaining 10 were verified to be non-infected), and 
classified high-power field images according to 2018 ICM criteria. Then, we inputted 576 positive images and 576 
negative images into a neural network by employing a resNET model, used to select 461 positive images and 461 
negative images as training sets, 57 positive images and 31 negative images as internal verification sets, 115 positive 
images and 115 negative images as external test sets.

Results: The resNET model classification was used to analyze the pathological sections of PJI patients under high 
magnification fields. The results of internal validation set showed a positive accuracy of 96.49%, a negative accuracy 
of 87.09%, an average accuracy of 93.22%, an average recall rate 96.49%, and an F1 of 0.9482. The accuracy of external 
test results was 97.39% positive, 93.04% negative, the average accuracy of external test set was 93.33%, the average 
recall rate was 97.39%, with an F1 of 0.9482. The AUC area of the intelligent image-reading diagnosis system was 
0.8136.

Conclusions: This study used the convolutional neural network deep learning to identify high-magnification images 
from pathological sections of soft tissues around joints, against the diagnostic criteria for acute infection, and a high 
precision and a high recall rate were accomplished. The results of this technique confirmed that better results could 
be achieved by comparing the new method with the standard strategies in terms of diagnostic accuracy. Continuous 
upgrading of extended training sets is needed to improve the diagnostic accuracy of the convolutional network deep 
learning before it is applied to clinical practice.
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Background
Periprosthetic joint infection (PJI) represents a devastat-
ing complication after arthroplasty [1]. As the third most 
common cause of failure in primary joint replacement 
surgery and the most common cause of failure in revision 
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surgery, PJI has attracted special attention of joint sur-
geons. According to literature, poor understanding of 
low-grade infection [2–5] and missed diagnosis tended 
to result in inappropriate treatment. For example, non-
infectious treatment measures might be in appropriately 
used for patients with periprosthetic infection. Although 
orthopedists and scientists have endeavored to avoid PJI, 
across the globe, the overall incidence after joint replace-
ment has not shown a substantial decline in the past 
years [6].

As we know it, effective treatment starts with accurate 
diagnosis. Since the introduction of low friction arthro-
plasty in 1961, researchers have been struggling to fig-
ure out the way to accurately diagnose PJI [7]. In 2011, 
Musculoskeletal Infection Society (MSIS) proposed diag-
nostic criteria for PJI on the basis of clinical symptoms, 
serological results and histopathological findings [8, 9]. 
In 2018, International Consensus Conference (ICM) 
put forward a new definition of PJI [10] upon long-term 
cohort studies and literature review [3], and modified 
the weighted scores of various diagnostic criteria. These 
diagnostic criteria integrated multiple indicators cov-
ering serology, pathology, gene sequencing and micro-
biology, among others. Against the novel criteria, the 
diagnosis of PJI based on a single indicator is often con-
sidered inadequate. Over the past decades, neutrophil 
count has been employed for the pathological diagnosis 
for its high specificity [11].

Many challenges remain in the traditional diagnosis 
of local infection of joint synovial soft tissues. Accord-
ing to the current ICM consensus in 2018, if more than 
10 neutrophils are found in a 400 × high magnification 
field, the field is deemed positive for infection [10]. How-
ever, neutrophils vary morphologically and experience is 
needed in the pathological identification of infection. On 
the other hand, the manual scanning of the entire section 
is difficult and recording the number of neutrophils with 
different morphologies presents another challenge. These 
difficulties impair the accuracy and sensitivity of patho-
logical diagnosis [12]. Subjective selection of target areas 
leads to poor repeatability/reproducibility and reduces 
the power of intraoperative pathological evidence. In 
addition, the time-consuming intraoperative frozen sec-
tion procedure can’t satisfy the timeliness as required by 
the relevant guidelines.

The twentieth century witnessed the appearance of 
machine learning and scientists have been employing 
machine learning as a research tool to resolve problems 
that are humanly impossible to address, leading to the 
advent of artificial intelligence technology. At present, 
with the rapid development of artificial neural network, 
artificial intelligence technology has been applied in the 
medical and health fields, and its application in medicine 

has brought profound changes to the medical practice 
and researches. With the incremental progress of the 
artificial intelligence technology, it has been increasingly 
used in the various fields of medical sciences, includ-
ing natural language processing, speech recognition, 
diagnosis aided by computerized visioning, image rec-
ognition, big data analysis, pharmaceutic research and 
development. Astuto et  al. [13] developed an automatic 
model based on knee joint data using CNN, which can 
automatically detect and grade injuries of bone, carti-
lage, meniscus and ACL. Meanwhile, deep learning has 
been applied to automatic segmentation and classifica-
tion of colonoscopically-collected tissues, thus allowing 
for automatic analysis of colorectal cancer specimens [14, 
15]. In addition, the deep-learning-based segmentation 
and classification of glomeruli with different pathological 
changes shows good prospect of application in the field 
of nephrology [16].

The purpose of this study was to establish a model for 
the pathological diagnosis of PJI by employing a deep 
learning method based on convolutional network. We, 
by computerized classification of the HE-stained speci-
mens of tissues in the adjacent of infected joint, assessed 
whether the specimens were infected and the result was 
used as evidence for the diagnosis of PJI. Moreover, we 
preliminarily explored the use of multiple infection indi-
cators for the diagnosis of PJI under high-magnification 
fields.

Methods
Material acquisition
This study enrolled 20 revision patients after joint 
replacement from the Department of Orthopedics of 
the First Medical Center of Chinese PLA General Hos-
pital, from January 2021 to January 2022. Among them, 
10 patients were diagnosed with PJI and 10 were non-
infected patients, according to the 2018 ICM Diagnostic 
Guidelines. The basic data of the patients are listed in 
Table 4. All the 10 patients with confirmed PJI met one 
of the main diagnostic criteria in the 2018 PJI Diagnos-
tic Guidelines and culture revealed bacteria in both the 
joint fluid and tissue masses around the prosthesis. The 
bacteria identified and serological indicators are given in 
Table 5. Tissue samples were harvested from the patients 
during surgery for the preparation of frozen sections. The 
sample collection was done in strict accordance with the 
2018 ICM diagnostic criteria. ICM diagnostic criteria 
recommended intraoperative collection of specimens at 
three or more sites of suspected soft tissue infection. In 
this study, if knee infection was suspected, samples were 
taken at the distal part of femur, proximal end of tibia 
and from joint capsule. In cases suspected of hip infec-
tion, the samples were harvested near the femoral head, 
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acetabula, and from joint capsule. According to the cri-
teria, the tissue samples collected were bagged separately 
and used as the tissue source for the pathological diag-
nosis. Intraoperatively, the tissue samples were collected 
by a doctor from the Pathology Department of the center 
and were subjected to routine HE staining.

Model establishment
The frozen pathological sections of the above 20 patients 
were converted into electronic images by using UN scan-
ner and McUddy scanner, and then the entire section 
(image) was artificially segmented under the high mag-
nifications (400 ×) and observed by employing IViewer 
software package. The segmented electronic images were 
saved in TIFF format. Two pathologists read the images 
and made pathological diagnosis against the 2018 ICM 
diagnostic criteria. According to the criteria, a white 
blood cell count greater than 10 under high magnifica-
tions is deemed positive, otherwise negative. A total of 
576 positive images (from 10 patients diagnosed with 
PJI) and 576 negative ones (from 10 uninfected patients) 
were identified. Eight positive patients (including 461 
images) and 8 negative patients (involving 461 images) 
were included in a training set, and the remaining two 
positive patients (115 images) and two negative patients 
(115 images) were assigned into an external test set. 57 
positive and 31 negative images were selected from the 
training set for the internal validation. Resnet deep 
learning convolutional network model was utilized for 
training. Upon training of a self-developed intelligent 
image-reading system using the two sets, the system read 
the positive images and negative ones in accordance with 
2018 ICM diagnostic indicators and made the diagnosis 
(Figs. 1, 2 and 3).

1. Training stage: The training stage included data pre-
processing, network model construction, network 
initialization, and training of the model and other 
modules and components.

 Data pre-processing: This experiment mainly used 
the technique of horizontal flipping to enhance the 
data of the training set images, increasing the amount 
of training data and improving the generalizing abil-
ity of the model. The normalization of the image ten-
sor could prevent the saturation of neuron output 
caused by excessive net input absolute value.

 Network model construction: ResNet34 was 
employed as the fundamental network structure in 
this experiment.

 Model training: First, the processed data set was 
input to the network, the output predictive values 
and the data truth values were input to the loss func-
tion for calculation, and the inverse gradient was 
input to the optimizer, so as to update the weight of 
the model. The training was running until the model 
attained a good learning effect and the model was 
saved.

2. Test stage: The test stage involved pre-processing, 
network model prediction and development of other 
modules.

 Data preprocessing: the test set images do not per-
form data enhancement operation, but only perform 
image tensor normalization.

 Test model: The flow of the test model was essentially 
the same as that of the training model, the differences 
were as follows: (1) The training process required 
the calculation of the reverse gradient to update the 
model weight, but the testing process did not; (2) In 
the training process, the forward and reverse calcula-
tion of each image was done several times. In the test 
process, only one forward calculation was performed 
for each image; (3) The ultimate goal of the test pro-
cess was to judge the correctness of the result and 
calculate the accuracy of model prediction.

Results
The model was internally validated by  employing  the 
images used for the model establishment for the test of 
feasibility. 57 positive images and 31 negative images 
were selected from the aforementioned 461 images. The 
accuracy for positive images was 96.49%, and the accu-
racy for the negative ones was 87.09%. The precision rate 
and the recall rate were 93.22% and 96.49%, respectively, 
with F1 being 0.9482.

In this experiment, deep learning based on ResNet34 
neural network model was used to identify and classify 
pathological images, and the accuracy of external test 
set reached 95.22%. The accuracy of external test results 
was 97.39% for positive images and 93.04% for negative 
image, respectively, the average accuracy of test being 
93.33%. The average recall rate was 97.39%, with an F1 of 
0.9532.

For internal verification, the images used for training 
were employed, and the internal verification result was an 
initial result when training was half-done. External test 
result was the result when training was completed with 
images that had never been used in the training. Table 1 
shows that the external test results were better than those 
of the internal verification, indicating that the convolu-
tional network deep learning improved with training and 
the diagnostic accuracy increased.
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As illustrated in Table 2, the results of the external test 
set were better than that of the internal validation set on 
the whole. The external test showed a higher diagnostic 

accuracy. The convolutional network deep learning 
method could be further optimized with the accumu-
lation of data of the training set. At the same time, the 

Fig. 1 Overall flow of experiment
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recall rate of positive images was higher than the accu-
racy rate, indicating that the algorithm could identify 
most infections, and the missing rate of infections was 
low.

The closer to (0, 1) the ROC curve is, the further the 
point deviates from the 45° diagonal (from the bottom 
left to the top right), the larger the area under the curve 
(AUC), indicating that the classifying effect of binary 
classifier is better (Fig. 4).

An ROC curve corresponding to a binary automatic 
recognition result is shown in Fig. 4, and AUC area was 

0.8136. Statistically, ROC curve is used to represent the 
discriminating ability of variable threshold binary clas-
sifier. The horizontal coordinate of the curve is the false 
positive rate (FPR) under different thresholds, that is, 
the proportion of the samples identified to be positive 
in all negative samples. The ordinate is the true positive 
rate (TPR), namely, the proportion of the samples that 
are identified to be positive in all positive samples. The 
ROC curve in the figure deviates from the diagonal and is 
closer to point (0, 1), indicating that the model has a good 
classifying effect.

The Fig. 5 shows that the confusion is not conspicuous 
in the experimental results, and a good classifying effect 
was achieved. This marginal confusion could be allevi-
ated by increasing sample size, further enriching annota-
tion data and fine-tuning hyper-parameters.

The corresponding confusion matrix is shown in Fig. 5. 
The horizontal axis is the infection cases identified; the 
vertical axis is the cases of infections. “0” represents 
the negative cases, “1” denotes the positive (infection) 
cases, and the colors of the grid indicate the presence 
or absence of infection, with red being infected cases 
and the yellow the negative cases. The darker the color, 
the larger the case size. The values outside the diago-
nals (upper left to lower right) of the confusion matrix 
are the degree of confusion in corresponding cases. The 
darker the squares outside the diagonals, the greater the 

Fig. 2 Process of Training

Fig. 3 Process of test

Table 1 Validation results

Positive accuracy (%) Negative 
accuracy 
(%)

Internal validation set 96.49 87.09

External test set 97.39 93.04

Table 2 External test results

Positive image Average 
accuracy (%)

Average recall 
rate (%)

F1 index

Internal validation set 93.22 96.49 0.9482

External test set 93.33 97.39 0.9532
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Fig. 4 ROC curve of test

Fig. 5 Confusion matrix of test
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confusion. The figure shows that the confusion was not 
obvious in the experimental results, and a good classifi-
cation effect was attained. This slight confusion could be 
eased by increasing sample size, further enriching anno-
tation data and fine-tuning hyper-parameters.

In this study, the deep learning convolutional network 
system was used, upon learning, to diagnose PJI and 
learn to identify the images, positive or negative, under 
high magnifications, and analyze and synthesize the 
image features under high magnifications. Comprehen-
sive indicators, such as tissue edema and necrosis of var-
ying severity, texture of infected tissues, infiltration and 
proliferation of neutrophils and other inflammatory cells 
and  hyperplasia of capillaries were combined to deter-
mine whether a given field was positive for infection. 
Compared with neutrophil count alone, using infection-
related findings as basis of pathological diagnosis could 
accomplish higher sensitivity and specificity.

Through neural network deep learning, we established 
an intelligent image reading system that could distin-
guish between the positive and negative images against 
the 2018 ICM criterion (more than 10 neutrophils per 
high power field, Table  3). Meanwhile, we preliminar-
ily explored the possibility of comprehensively evalu-
ating the model of infection by means of deep learning 
network. The infection model integrated tissue edema, 
necrosis of varying degrees, texture of infected tissues, 
infiltration of neutrophils and other inflammatory cells 
and hyperplasia of capillaries in the pathological assess-
ment and diagnosis of images.

Basic data of the patients included age, gender, BMI, 
type of joint replacement procedures and sides operated 
(Table  4). The patients were divided into two groups in 
terms of diagnostic results (PJI-positive or PJI-negative). 
The number assigned to each patient in the table also 
applies in Table 5.

The patient was diagnosed with PJI according to the 
2018 ICM diagnostic criteria, which specify that normally 
the patient’s white blood cell count (WBC) ranges from 
3.5 ×  108/L to 10 ×  108/L, the neutrophil percentage (PMN) 
from 0.5 to 0.7, C-reactive protein (CRP) from 0–0.8 mg/dL, 
interleukin-6 (IL-6) from 0 to 5.9  pg/mL, the erythrocyte 
sedimentation rate (ESR) from 0 to 20  mm/h, the plasma 
D-dimer from 0 to 0.55 µg/mL. The infection-related bacte-
ria were identified by culture of joint fluid extract harvested 
preoperatively or tissues collected intraoperatively and the 
identification result was further confirmed if the bacteria of 
the two kinds of samples were identical.

Discussion
PJI represents a common and catastrophic complica-
tion after artificial joint replacement [1] and is esti-
mated to occur in 1–3% of patients undergoing primary 

replacement and in 3–5% of patients undergoing revi-
sion [11]. With the improvement and increasingly wider 
application of the joint replacement surgery and related 
technologies, more and more patients receive the proce-
dure. The incidences of PJI have been on the rise over the 
recent years and accurate diagnosis of the complication is 
an urgent task of clinical research.

The current international consensus regarding the 
pathological diagnosis of PJI is the result of a protracted 
research endeavor. PJI is pathologically characterized by 
acute infectious inflammation of soft tissues, and has 
been described in terms of neutrophil infiltration, tis-
sue edema, and necrosis of varying degrees and hyper-
plasia of capillaries [17]. Current diagnostic criteria are 
based on the feature of neutrophils, alone, to distinguish 
it from other infections in a simplified and standardized 
way. When neutrophils were initially used as a measure 
of pathological diagnosis, a field with over 23 neutro-
phils under 400 × magnifications were taken as a positive 
area. Nonetheless, the specificity of this diagnostic index 
was merely 23% [18]. Subsequently, a series of interna-
tional conferences modified this standard, and the most 
recent ICM consensus reached in 2018 proposed that a 
high magnification field containing more than 10 neutro-
phils was deemed as an area positive for infection [11]. 
According to UJBIS consensus in 2021, a 400 × field of 
vision with more than 5 neutrophils was seen as a posi-
tive area [19]. The pathological diagnosis of PJI has been 
constantly evolving towards standardization and higher 
accuracy, but has been hindered by such problems as 
long time and low specificity, among others.

In recent years, medical researchers are increasingly 
employing network deep learning and achieved good 
results. Rajpurkar et  al. used AI to screen lung cancer 
from chest radiographs [20] and attained impressive 
results. Although a great many difficulties remain in the 
clinical application of AI to the diagnosis of CT or MRI 
or other complicated images, use of AI algorithms in 
the diagnosis of microscopic images with few layers and 
relatively simple patterns can attain better results. Bang 
et al. reviewed 8 studies and concluded that AI algorithm 
could be used as a reliable tool for endoscopic diagnosis 
of Helicobacter pylori infection [21]. This review suggests 
that it is possible to use AI algorithm as an auxiliary tool 
in the diagnosis and treatment. The application of convo-
lutional networks in the reading of pathological sections 
were not uncommon. Hermsen et al. trained a convolu-
tional neural network [22] for multi-class segmentation 
of digital renal tissue sections and it was able to identify 
glomeruli, renal tubules and interstitia in digitalized renal 
tissue sections. Han et al. also used convolutional neural 
network trained from Asan dataset, Med-Node dataset 
and Atlas site images to classify images of 12 different 
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Table 3 Model case analysis
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Table 4 Basic data of the patients

Group n Sex Age Height (m) Weight (Kg) BMI Operation

negative 1 female 28 1.50 42 18.67 right hip arthroplasty

2 female 79 1.60 61.5 24.02 right hip arthroplasty

3 female 67 1.60 78 30.47 right hip arthroplasty

4 female 64 1.60 71 27.73 left knee arthroplasty

5 female 64 1.60 71 27.73 left knee arthroplasty

6 female 76 1.60 60 23.44 left knee arthroplasty

7 male 43 1.70 75 25.95 left hip arthroplasty

8 male 36 1.70 70 24.22 right hip arthroplasty

9 male 70 1.60 65 25.39 left knee arthroplasty

10 male 54 1.74 92 30.39 left knee arthroplasty

positive 11 male 80 1.70 70 24.22 left knee arthroplasty

12 male 30 1.75 95 31.02 left hip arthroplasty

13 male 60 1.69 65 22.76 left knee arthroplasty

14 male 85 1.65 73 26.81 left knee arthroplasty

15 male 53 1.78 80 25.25 right hip arthroplasty

16 male 23 1.70 95 32.87 right hip arthroplasty

17 male 59 1.76 80 25.83 left hip arthroplasty

18 female 67 1.60 78 30.47 right hip arthroplasty

19 female 67 1.63 72 27.10 right knee arthroplasty

20 female 68 1.50 54 24.00 left hip arthroplasty

Table 5 Patient diagnosis relevant data

Group + AA1:J26 n WBC positive PMN% CRP IL-6 ESR D-dimmer Bacterial culture results

negative 1 - - - - - - -

2 - - -  + - - -

3 -  + - - - - -

4 - - - - - - -

5 - - -  + - - -

6 - - - - - - -

7 - – - - - - -

8 - – - - - - -

9 - -  + - - - -

10 - - - -  + - -

positive 11  +  + -  +  +  + Staphylococcus aureus

12  +  +  +  +  +  +  + - Staphylococcus epidermidis

13 - -  +  +  +  +  + Staphylococcus epidermidis

14  +  +  +  +  +  +  + Staphylococcus epidermidis

15  +  +  +  + -  +  +  + Streptococcus pharyngitis

16 - -  +  +  +  +  + Klebsiella pneumoniae

17 -  +  +  +  +  +  + - Gram-positive bacilli

18 -  +  +  +  +  +  + Staphylococcus aureus

19  +  + -  +  +  + Propionibacterium bullosa

20  +  +  +  +  +  +  +  +  + Staphylococcus aureus

4–10 -  < 0.5 –  < 2 - 0–5.9 - 0–20 - 0–0.55 -

11–20 + 0.5–0.7 - 2–10 + 5.9–23.6 +  > 20 + 0.55–5.5 + 

 > 20 +  + 0.7–0.9 +  > 10 +  +  > 23.6 +  + 

 > 0.9 +  + 
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skin conditions, and achieved a sensitivity comparable to 
that attained by dermatologists in identifying basal cell 
carcinoma [23]. The above two experiments suggest that 
convolutional network learning is feasible in identifying 
some characteristic regions, such as the region of kidney 
or regions where cancer cells gather. So far, studies are 
scanty on the use of the convolutional network learning 
in the pathological diagnosis of inflammation and infec-
tion. Han et al. trained region-based convolutional neural 
network to diagnose fungal infection of lichenoid lesions 
and the network outperformed dermatologists [24].

In the past, pathologists have empirically put forward 
some features of the infected area but the features are 
hard to describe or no uniform or standardized identifi-
cation methods are available. The pathology of infection 
has been well studied, mainly in tissues of epithelial and 
acinar cells, including pulmonary, gastric mucosal and 
vaginal tissues, which are histopathologically highly spe-
cific. For instance, a study on lung infection by Hussain 
et al. showed that the infected lungs had a localized cen-
trally-calcified necrotic area, with chronic infiltration of 
inflammatory cells into the margins [25]. However, path-
ological identification of deep tissues, in general, includ-
ing connective tissue in particular, is difficult because the 
aforementioned characteristics may not be applicable to 
non-mucosal tissues. In 2009, Krenn et al. proposed [18] 
that in aseptic loosening and infection-related loosening 
of prosthesis, a peri-prosthetic membrane exists around 
the prosthesis, and the cause of loosening can be dis-
tinguished by the pathological differences of the mem-
brane. Although there are many pathological differences 
in the membrane, the most convenient and reproducible 
measure is 23 neutrophils in 10 high power fields (HPFs). 
Sigmund et al. applied this diagnostic criterion to the fro-
zen sections and proved that the result was no different 
from that of permanent sections [11]. According to the 
diagnostic criteria formulated at the ICM in 2018, path-
ological diagnosis can be definitively made if more than 
10 neutrophils are found in 5 fields selected from multi-
ple high-magnification ones [10]. This is in contrast with 
the criterion put forth in 2021 (UJBIS), which states that 
more than 5 neutrophils found in the 5 high magnifica-
tion fields can establish pathological diagnosis [19].

Though international organizations have been relent-
lessly improving the diagnostic accuracy by revising the 
number of neutrophils, traditional (human) diagnostic 
approaches are still fraught with the tough problems of 
being time-consuming and having low sensitivity [11]. 
First of all, artificial identification of infected areas often 
fails to cover the entire pathological section area, which 
tends to cause the omission of infected areas. Mean-
while, neutrophils have various forms and are easy to 
be confused with other inflammatory cells, resulting in 

counting deviation. Second, artificial chemical staining 
and artificial counting of white blood cells are time-
consuming and costly [12], rendering it difficult to make 
timely intraoperative diagnosis on the basis of patho-
logical specimens. Ultimately, pathological diagnosis of 
PJI is not sensitive. The low sensitivity results not only 
from omission of infected fields on the sections but also 
from the inadequate understanding about neutrophil 
morphology. Moreover, the very use of neutrophils as 
an indicator also presents some problems. Admittedly, 
the new diagnostic criterion, to some degrees, enhances 
the specificity of the diagnosis (up to about 50%) when 
maintaining its sensitivity at an appropriate level [10]. 
The UJBIS consensus takes a 400 × field of vision with 
more than 5 neutrophils as an area positive for infec-
tion, and the specificity is too low to make it a major 
diagnostic measure [19].

In this experiment, a batch of images were selected as 
the training set against the existing ICM diagnostic cri-
teria (more than 10 neutrophils in a 400 × field). After 
external verification, the intelligent diagnosis system 
registered a high positive recognition rate and a high 
negative recognition rate. Our analysis revealed that the 
artificial intelligence system did not identify infected 
areas in terms of neutrophils alone and it also made 
diagnosis by comprehensively assessing tissue edema, 
necrosis, tissue texture, infiltration of neutrophils and 
other inflammatory cells, and proliferation of capillaries, 
among others. This comprehensive diagnostic approach 
deserves further studies since it achieved a diagnostic 
sensitivity comparable to the artificial judgment of simi-
lar images under the high-power field.

The convolutional network deep learning has the 
advantages of high throughput, good reproducibility and 
high accuracy for the identification of infected regions 
of PJI images at high magnifications. Compared to the 
linear nature of manual recognition, convolutional net-
work deep learning can simultaneously analyze multi-
ple images. In the process of revision surgery, the time 
saved may mean lowered surgical risk and more favora-
ble prognosis for patients [26]. On the other hand, arti-
ficial (human) recognition of pathological images is 
highly subjective, and results might vary with different 
readers/pathologists. The results of image reading by 
convolutional network deep learning are repeatable, and 
are therefore evidence of higher levels. Additionally, for 
human reading of pathological sections, it is often nec-
essary to select highly infected areas first, and then the 
high-magnification fields were scanned, which inevitably 
results in the omission of infected areas and the misjudg-
ment about neutrophils. However, convolutional network 
deep learning can cover the entire section, without omis-
sion, thereby achieving more accurate diagnosis.
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Pathologically, infection of the adjacent tissues of a joint 
manifests as acute inflammation. Under a microscope, it 
presents more than the accumulation of neutrophils to 
include soft tissue edema, muscular necrosis of different 
degrees, infiltration of a variety of inflammatory cells, 
even changes in the tissue internal environment [18]. The 
features are sensitive but not specific and are difficult to 
be translated into quantitative criteria. With the convo-
lutional network deep learning, all the details of acute 
inflammation in an image can be enhanced and quantified 
and the resultant images can serve as data for model train-
ing or image recognition. Use of convolutional network 
deep learning not only avoids the judgment of the com-
plex morphology of neutrophils and but also gets around 
the age-old controversy over the number of neutrophils.

The internal verification utilized the images that had 
been used for training, and the internal verification result 
was an initial result when training was half-done. For 
external test, the images that had not been used in the 
training were employed, and the external result was the 
ultimate result when training was completed. Tables  1 
and 2 show that the external test results were better than 
those of the internal verification, indicating that the con-
volutional network deep learning improved with training 
and the diagnostic accuracy also increased.

Our preliminary application of artificial intelligence 
in the pathological diagnosis of PJI is a new attempt and 
some limitations are obvious. First of all, we adopted ret-
rospective analysis to select the sample population, and 
the basic sample size of section was small, which may 
have caused omission of some pathological character-
istics of PJI. Second, the diagnostic results of this deep 
learning convolutional network were still different from 
the results based on the expert consensus of 2018 ICM 
[12]. Better results can be achieved by comparing the 
new method with the standard strategies in terms of 
diagnostic accuracy. Our method integrated such fea-
tures as histological characteristics of infection (edema, 
necrosis and accumulation of neutraphils) and the overall 
morphology of the section (grains, color and pixel size) 
into the assessment of the images. Continuous upgrading 
of extended training sets is needed to improve the diag-
nostic accuracy of the convolutional network deep learn-
ing before it is applied to clinical practice.

Conclusion
In this study, resNET model, a deep learning algorithm, 
was trained to identify high-magnification images from 
pathological sections of soft tissues around joints, against 
the diagnostic criteria for acute infection, and a high 
precision and a high recall rate were accomplished. This 
technique may improve the accuracy of pathological 
diagnosis of PJI by more comprehensively assessing the 

pathological features of PJI. Further studies are needed 
to determine the feasibility of these results in prospective 
clinical trials.

Acknowledgements
Not applicable.

Authors’ contributions
Ming Ni, Guoqiang Zhang, Ye Tao designed the study. Ye Tao and Hanwen Hu 
designed and trained the Resnet model. Jie Li, Ye Tao and Hanwen Hu selected 
the picture of high-power field. Guoqiang Zhang, Qingyuan Zheng provided 
the external materials. Ye Tao, Ming Ni, Jie Li analyzed the data and Hanwen 
Hu made the figures. Ye Tao, Hanwen Hu, Ming Ni drafted the paper. The final 
manuscript was revised and approved by all authors.

Funding
This study was supported by a grant from PLA General Hospital big data 
project (No. 2019MBD-042).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the ethics committee of the Chinese PLA General 
Hospital.

Consent for publication
All authors of the manuscript have read and agreed to its content and are 
accountable for all aspects of the accuracy and integrity of the manuscript in 
accordance with ICMJE criteria.

Competing interests
Guoqiang Zhang is the Editorial Board Member of Arthroplasty and other 
authors declare that they have no competing interests. All authors were not 
involved in the journal’s review of or decisions related to this manuscript.

Received: 11 June 2022   Accepted: 10 August 2022

References
 1. Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic 

joint infection. Lancet. 2016;387:386–94.
 2. Ibrahim MS, Twaij H, Haddad FS. Two-stage Revision for the culture- 

Negative infected Total hip arthroplasty: A comparative study. Bone Joint 
J. 2018;100 – B Supple(1 A):3–8.

 3. Kheir MM, Tan TL, Shohat N, Foltz C, Parvizi J. Routine diagnostic tests 
for periprosthetic joint infection demonstrate a high false-negative rate 
and are influenced by the infecting organism. J Bone Joint Surg Am. 
2018;100(23):2057–65.

 4. Akgun D, Muller M, Perka C, Winkler T. The serum level of C-reactive pro-
tein alone cannot be used for the diagnosis of prosthetic joint infections, 
especially in those caused by organisms of low virulence. Bone Joint J. 
2018;100-B(11):1482–6.

 5. Cazanave C, Greenwood-Quaintance KE, Hanssen AD. Estimation of joint 
infection by using anticoagulant microbiologic diagnosis. J Clin Micro-
biol. 2013;51(7):2280–7.

 6. Huotari K, Peltola M, Jamsen E. Incidence of late joint infections: A 
Registrie-based study of 112,708 primary hip and knee replacements. 
Acta Orthop. 2015;86(3):321–5.

 7. Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 
2014;27(2):302–45. https:// doi. org/ 10. 1128/ CMR. 00111- 13. PMID: 
24696437; PMCID: PMC3993098.

 8. Shohat N, Bauer T, Buttaro M, et al. Hip and knee section, what is the 
definition of a periprosthetic joint infection (PJI) of the knee and the hip 

https://doi.org/10.1128/CMR.00111-13


Page 12 of 12Tao et al. Arthroplasty            (2022) 4:49 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

can the same criteria be used for both joints: proceedings of international 
consensus on orthopedic infections. J Arthroplasty. 2019;34(2 s):S325–7.

 9. Villa JM, Pannu TS, Piuzzi N, Riesgo AM, Higuera CA. Evolution of diag-
nostic definitions for periprosthetic joint infection in total hip and knee 
arthroplasty. J Arthroplasty. 2020;35(3S):S9-S13. https:// doi. org/ 10. 1016/j. 
arth. 2019. 10. 032. Epub 2019 Oct 23. PMID: 32046836.

 10. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, Shohat 
N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An 
Evidence-Based and Validated Criteria. J Arthroplasty. 2018;33:1309–14.

 11. Sigmund IK, McNally MA, Luger M, Bohler C, Windhager R, Sulzbacher 
I. Diagnostic accuracy of neutrophil counts in histopathological tissue 
analysis in periprosthetic joint infection using the ICM, IDSA, and EBJIS 
criteria. Bone Joint Res. 2021;10(8):536–47.

 12. Kelly ME, Bahethi SR, King ME, Elstner BC, Turcotte JJ, King PJ. The Utility of 
Frozen Section Histology in Diagnosing Periprosthetic Joint Infection in 
Revision Total Joint Arthroplasty. J Arthroplasty. 2021;36:2137–43.

 13. Astuto B, Flament I, Namiri NK. Automatic deep learning – Assisted 
detection and grading in knee MRI studies. Ieee Transactions on Neural 
Networks and Neural Networks. Artificial Intelligence. 2021;3(3):e200165.

 14. Zhu C, Mei K, Peng T, et al. Multi-level colonoscopy malignant tissue detec-
tion with adversarial CAC-UNet[J]. Neurocomputing. 2021;438:165–83.

 15. Feng R, Liu X, Chen J, et al. A deep learning approach for colonoscopy 
WSI analysis: accurate segmentation and classification. IEEE J Biomed 
Health Inform. 2020;25(10):3700–8.

 16. Jiang L, Chen W, Dong B, et al. A Deep Learning-Based Approach for Glo-
meruli Instance Segmentation From Multistained Renal Biopsy Pathologic 
Images[J]. Am J Pathol. 2021;191(8):1431–41.

 17. Morawietz L, Weimann A, Schroeder JH, Kuban RJ, Ungethuem U, Kaps C, 
Slevogt H, Gehrke T, Krukemeyer MG, Krenn V. Gene Expression in Endo-
prosthesis Loosening: Chitinase Activity for Early Diagnosis? J Orthop Res. 
2008;26:394–403.

 18. Krenn V, Otto M, Morawietz L, Hopf T, Jakobs M, Klauser W, Schwantes B, 
Gehrke T. Histopathologische Diagnostik in der Endoprothetik Peripro-
thetische Neosynovialitis, Hypersensitivitatsreaktion und Arthrofibrose. 
Orthopade. 2009;38:520–30.

 19. McNally M, Sousa R, Wouthuyzen Bakker M, Chen AF, Soriano A, Vogely 
HC, Clauss M, Higuera CA, Trebše R. The EBJIS definition of periprosthetic 
joint infection A practical guide for hip joint Infection. Bone Joint J. 
2021;103 B(1):18–25.

 20. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for 
chest radiograph diagnosis: A retrospective comparison of the CheXNeXt 
algorithm to practicing radiologists. PLoS Med. 2018;15(11):e1002686. 
https:// doi. org/ 10. 1371/ journ al. pmed. 10026 86. PMID: 30457988; PMCID: 
PMC6245676.

 21. Bang CS, Lee JJ, Baik GH. Artificial Intelligence for the Prediction of Helico-
bacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-
Analysis Of Diagnostic Test Accuracy. J Med Internet Res. 2020;22(9):e21983.

 22. Hermsen M, De Bel T, Den Boer M, Steenbergen EJ, Kers J, Florquin S, 
Roelofs JJTH, Stegall MD, Alexander MP, Smith BH, Smeets B, Hilbrands LB, 
Van der Laak JAWM. Deep Learning – Based Histopathologic Assessment 
of Kidney Tissue. J Am Soc Nephrol. 2019;30(10):1968–79.

 23. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the 
Clinical Images for Benign and Malignant Cutaneous Tumors Using a 
Deep Learning Algorithm. J Invest Dermatol. 2018;138(7):1529–38.

 24. Han SS, Park GH, Lim W, Kim MS, Na JI, Park I, Chang SE. Deep neural net-
works show an equivalent and often superior performance to dermatolo-
gists in onychomycosis diagnosis: Automatic construction of onychomy-
cosis datasets by region-based convolutional deep neural network. PLoS 
One. 2018;13(1):e0191493.

 25. Hussain R, Mahmood F, Ali HM, Siddique AB. PCR and clinico-pathological 
diagnosis of naturally occurring pneumonic pasturellosis (mannheimi-
osis) during subtropical climate in sheep. Microbial Pathogenesis Microb 
Pathog. 2017;112:176–81.

 26. Young SW, Muu-Grigg J, Frampton CM, Cullen J. Does speed matter? 
Revision rates and functional outcomes in TKA in relation to duration of 
surgery. J Arthroplasty. 2014;29(7):1473–14771.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.arth.2019.10.032
https://doi.org/10.1016/j.arth.2019.10.032
https://doi.org/10.1371/journal.pmed.1002686

	A preliminary study on the application of deep learning methods based on convolutional network to the pathological diagnosis of PJI
	Abstract 
	Objective: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Material acquisition
	Model establishment

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


