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Abstract 

Background  To investigate the influence of osteophytes on postoperative gap balancing, and to work out a predic-
tive model of the relationship between osteophyte size and gap gaining in primary total knee replacement.

Methods  One hundred and ten patients were enrolled in the study. Pre- and postoperative radiographs were col-
lected and analyzed. They were assigned to the training dataset and test dataset randomly at a ratio of 9:1 by using 
the statistical package R (version 4.0.5). Size and marginal distances of osteophytes, planned bone cut planes, 
predicted bone cuts and joint gaps were labeled on the preoperative standing anteroposterior and lateral views, 
while actual bone cuts and joint gaps were recorded on the postoperative plain films, respectively. Statistical analysis 
was performed.

Results  Actual joint gaps were significantly related to the distances of medial and lateral predictive bone cutting 
lines, bone cut thickness on tibial side and posterior condylar, as well as size and marginal distances of osteophytes 
(P < 0.05). A predictive equation was generated, with a root mean square error (RMSE) of 3.4761 in validation. A 2-D 
planning system with adjustable input parameters and dim predictive outputs on joint gap was developed. The equa-
tion is S(JointGap) = 1.82+0.15∗y+0.552∗Tibialcut+0.953∗Femoralcut+0.197∗PostCondyle

Conclusion  Postoperative joint gap can be predicted on the basis of preoperative measurements on 2-D plain films. 
Larger sample size may help improve the effectiveness and accuracy of the predictive equation.
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Background
Total knee arthroplasty (TKA) is commonly used for sur-
gical treatment of knee osteoarthritis (OA) with good 
to excellent results reported. Preoperative planning is 
essential for a successful TKA procedure. The precision 
of planning has improved with the utility of digital plan-
ning systems and applying planning on three-dimen-
sional images, which are considered more accurate [1].

As one of the basic steps of TKA, gap balancing, an 
important technique, can create stable and balanced 
medial–lateral and flexion–extension gaps. Gap balanc-
ing can be variously achieved by removal of osteophytes, 
proper release of soft tissues, and reasonable compro-
mise to alignments, depending on different alignment 
concepts adopted. Intraoperatively, gap balance is a 
hand-check procedure, that relies on the experience of 
surgeons. Although the effect of osteophyte removal can 
be predicted from preoperative radiographic films, it is 
difficult to precisely quantify a balanced gap after release.

Computer science has been increasingly used in vari-
ous medical settings. More recently, artificial intelligence 
(AI)-based medical systems have become commercially 
available. Modern systems armed with machine learning 
algorithms have been applied in image processing, health 
state monitoring and prediction, detection of diseases, 
medication administration and management of patients, 
among others [2–8].

In this study, we attempted to develop a 2-D planning 
system with an algorithm of the balanced gap from the 
preoperative plain film of the knee. Computer-assisted 
methods were used to investigate the influence of osteo-
phytes on postoperative gap balancing and to obtain an 

equation that predicts the relationship between osteo-
phyte size and gap gaining in primary TKA for OA.

Methods
Sample enrollment
Radiographic data of patients who received primary 
TKA from January to December 2021 were reviewed. 
One hundred and ten TKA cases that met the inclusion 
criteria were enrolled. Criteria for inclusion and exclu-
sion are shown in Fig.  1. Standard pre- and postopera-
tive anteroposterior and lateral radiographs of the knee 
were collected for analysis. The study was approved by 
Ethics Committee of our institute (Approved Number: 
S2020-005–01).

Radiographic labelling
Several elements were defined on preoperative AP and 
lateral plain films (see Table 1, Fig. 2A and B). The thick-
ness of the bone cut was calculated. Due to the irregu-
larity in osteophyte shapes, the area of osteophytes on 
the femoral and tibial sides was taken as trapeziform, of 
which the apexes were defined on plain film. Borders of 
the trapeziform were designated w, x, y, and z (Fig. 2C).

On the postoperative films, only bone-cut lines were 
located (Table  2). We assumed that all included cases 
achieved a balanced rectangular joint gap after bone cut 
and soft tissue balancing. A rectangle was defined, with 
its longer borders standing for bone cut lines, while the 
shorter borders used for the measurement of joint gap 
(Fig. 2D).

Fig. 1  Criteria for inclusion and exclusion. Non-OA: rheumatic, post-traumatic or neoplasm diseases; Non-standard X-ray: significant rotation seen 
on anteroposterior view; Semi/total constraint implant: condylar constraint (CCK) or hinged implant
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Calibration of magnification and modification of labeled 
elements
Given errors that might occur in magnification, a 
marker was used during radiographic examination. Cal-
ibrated data were collected using unified magnification.

Since it was difficult to obtain the exact thickness of 
bone intraoperatively, and cutting lines on the femoral 
and tibial sides might not be precisely shown on X-ray 
films, modification of cutting line(s) might be required 
to obtain more precise parameters. Pre- and postopera-
tive AP films were overlapped in a unified magnifica-
tion. If cutting lines on pre- and postoperative films 
were not consistent, it was adjusted on preoperative 
AP film, and the amount of cutting was recalculated 
(Fig. 2E).

Surgical technique
Gap balancing techniques were utilized during the TKA 
procedure [9]. Routine mid-incision and medial para-
patellar approach were applied for arthrotomy. Osteo-
phytes protruding from the medial cortex of the distal 
femur and proximal tibia were removed. Since osteo-
phytes of the posterior distal femur were inaccessible 
before bone cutting, they were left intact until 4-in-1 cut-
ting was performed. A distal femoral cut was made first, 
with valgus of cutting jig set to 5°. Afterwards, a perpen-
dicular tibial cut was made. Two lamina spreaders were 
inserted into medial and lateral joint spaces, respectively. 
The lateral joint gap should be big enough to allow for 
spacer trial, while a 1-to-2  mm compromise of medial 
gap might be acceptable, because posterior osteophytes 

Table 1  Definition of elements for measurement on preoperative plain films (Fig. 2A and B)

Elements in System Description of computer algorithm Function

Femoral canal/axis (FAxis) A line connecting the centers of two incircles 
located at diaphysis and metaphysis of femur, 
respectively

Simulating intra-medullary rod of femoral cutting 
jig

Femoral cutting reference line (FRef) A line angulating 85° laterally to femoral canal/
axis (aLDFA), in contact with distal margin of lat-
eral/medial femoral condyle (height determined 
by the first contact with lateral or medial margin, 
which means the lower one in medial and lateral 
contact points were counted)

Simulating distal contact of cutting jig to distal 
femoral articular surface

Checkpoint for medial distal femur (FM) Contact point of Line FRef and distal margin 
of medial femoral condyle

The lower point was be chosen as contact point

Checkpoint for lateral distal femur (FL) Contact point of Line FRef and distal margin 
of lateral femoral condyle

Initial distal femur cutting line (Line FCut) A line parallel to Line FRef, being 9 mm apart 
proximally

Simulating 9-mm thickness of distal cut

Femoral cut True distance from FL/FM to FCut Lower point of FL/FM was selected for calculation

Tibial canal (TAxis) A line along with anatomic axis of tibial shaft Anatomic axis of tibial shaft

Checkpoint for medial proximal tibia (TM) Lowest point of medial tibial condylar

Checkpoint for lateral proximal tibia (TL) The point located laterally at 3/8 of the total 
width of tibial plateau

Initial proximal tibial cutting line (Line TCut) A line perpendicular to tibial anatomic axis 
Distance from Point TL to Line TCut was defined 
as 10 mm

Simulating 10-mm thickness of tibial cut

Tibial cut True distance from TL to Line TCut

Checkpoints for distal femoral osteophyte (F1 
& F2)

F1: most proximal point of femoral osteophyte 
basement, defined as the turning point of cortex 
to the upper margin of femoral osteophyte
F2: most protruding point of femoral osteophyte, 
defined as the turning point of femoral osteo-
phyte margins

Checkpoints for proximal tibial osteophyte (T1 
& T2)

T1: most distal point of tibial osteophyte base-
ment, defined as the turning point of tibial 
cortex to the lower margin of tibial osteophyte
T2: most protruding point of tibial osteophyte, 
defined as the turning point of tibial osteophyte 
margins

Osteophyte area (Trapeziform F1F2T2T1) A trapeziform area formed by four check points 
of osteophytes
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were left intact. External rotation of femoral component 
was determined with the knee in 90° flexion. Spreaders 
were inserted into the space between posterior condyles 
and tibial plateau, and maximum tension of collateral 
ligaments was achieved. Upon acheivement of balanced 
ligament tensions were achieved, a line parallel to tibial 
plateau was drawn on the surface of distal femur, which 
served as the external rotation reference. Then the four-
in-one cutting procedure would be performed by follow-
ing the principles of posterior reference procedure, as the 
distance between cutting lines of posterior condyles and 

tibia equaled to the total thickness of prosthesis in flex-
ion. A spacer trial might be helpful for determining the 
position of cutting lines. As it lay on the tibial plateau, the 
upper side of the spacer stood for the position of cutting 
line of posterior femur. Osteophytes of posterior femur 
were removed. Flexion and extension gaps should be 
confirmed with a spacer or spreaders. We recommended 
using the trial spacers that go with the prosthetic system, 
or performing a trial reduction instead. No more soft tis-
sue release should be performed as soon as bone cut is 
accomplished.

Fig. 2  Radiographic labeling and calibration of preoperative and postoperative X-rays. Labels on AP view demonstrated elements defined 
in Table 1. A & B, preoperative X-ray. C, osteophyte area. D, postoperative X-ray. E, calibration of magnification

Table 2  Definition of elements for measurement on postoperative plain films (Fig. 2C)

Elements Description Function

Femoral cutting line Backside of distal portion of femoral component Femoral cutting line

Tibial cutting line Backside of tibial component Tibial cutting line

Joint space rectangle Rectangle with femoral and tibial cutting lines as longer borders Simulating parallel joint space achieved 
after bone cutting and soft tissue balanc-
ing

Joint gap Shorter borders of joint space rectangle Joint gap achieved

Posterior condylar rectangle Rectangle with backside and tangent line to the posterior arc of poste-
rior condyle of femoral implant as longer borders

Thickness of posterior condyle (on 
lateral view)

Shorter borders of the posterior condylar rectangle Thickness of posterior condyle
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Estimation of joint gap upon osteophyte removal and soft 
tissue release
According to the rationale of gap balancing technique 
in TKA, soft tissue release should be minimal. The addi-
tional gap resulted mainly from removal of osteophytes, 
and was calculated from the difference between the outer 
and inner rims of osteophyte trapeziform area (Fig. 3).

Statistical analysis and predictive equation simulation
One hundred and ten cases were included in our study 
and were divided into a training dataset and a test data-
set randomly at a ratio of 9:1. Statistical package R (Ver-
sion 4.0.5, The R Foundation for Statistical Computing, 
Vienna, Austria) was used for statistical analysis. Rela-
tions among continuous variables were assessed in terms 
of Pearson’s correlation coefficient, while differences 
were tested by an independent t-test. A P < 0.05 was con-
sidered statistically significant.

Univariable linear regression analysis was performed 
to evaluate the association between each predictive vari-
able and the joint gap. Additionally, stepwise regression 
was conducted. Considering the correlation between 
independent variables, independent variables that had 
significant influence on dependent variables and were 
independent of each other were chosen in the multivari-
able analysis. Meanwhile, distributions of residual and fit-
ting values were checked to make sure that they were in 
line with the linear regression hypothesis.

A tenfold cross-validation was conducted to avoid a 
certain sampling bias. The fold with the best predictive 
effect was selected as the final model.

To compare the performance of the model and predict 
the contribution of the predictors in the multivariate lin-
ear regression model, we used R-squared to evaluate the 
performance of the models, with higher values indicating 
a more incredible prediction. Furthermore, the models’ 
root mean square error (RMSE) and mean absolute error 
(MAE) of the models were also calculated [10]. Low val-
ues of RMSE and MAE indicated good predictive power 
of the mode.

Results
Data description
All variables showed no significant differences in mean 
values between the training dataset and test datasets 
(Table  3). As shown in Figure, thickness of tibial cut, 
femoral cut and posterior condyle, length of borders 
of osteophyte trapeziform (w, x, y, and z) and joint gap 
were correlated significantly (P < 0.05). Moreover, border 

Fig. 3  Calculation of gap after osteophyte release

Table 3  Description and differences between training dataset 
and test dataset

Variables All (n = 110) Training 
(n = 99)

Test (n = 11) P-value

x 5.638 ± 2.75 5.632 ± 2.81 5.699 ± 2.25 0.944

y 10.181 ± 5.58 10.034 ± 5.66 11.503 ± 4.73 0.356

z 5.394 ± 3.78 5.419 ± 3.92 5.171 ± 2.15 0.748

w 16.6 ± 7.72 16.518 ± 8.08 17.34 ± 2.97 0.503

Tibial cut 10.575 ± 4.33 10.66 ± 4.49 9.813 ± 2.3 0.319

Femoral cut 7.175 ± 3.22 7.174 ± 3.3 7.18 ± 2.49 0.994

Post Condyle 8.723 ± 3.77 8.6 ± 3.88 9.826 ± 2.52 0.17

Joint gap 17.822 ± 6.27 17.733 ± 6.53 18.62 ± 3.15 0.449
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lengths of osteophyte trapeziform were correlated with 
each other, as well (Fig. 4).

Linear regression
Univariate analysis and multivariate analysis results are 
listed in Table  4. Each predictor had a significant influ-
ence on the dependent variable in the univariate analy-
sis (P < 0.05). The linear relationships were clearly shown 
between the predictors and Joint Gap (Fig. 5A).

Moreover, backwards-stepwise selection was con-
ducted. Considering the collinearity of linearity, y, thick-
ness of tibial cut, femoral cut and post condyle were 
retained in the multivariate analysis.

Distributions of residual and fitting values were shown 
in Fig. 5B, and satisfied the linear regression hypothesis.

The ten‑fold cross validation
The result of the tenfold cross-validation is shown in 
Table 5. The performance of the ten-fold model showed 

that the R-squared value was large. And the RMSE, 
MAE values were relatively low, which indicated that 
the model had good-fitting and was robust.

The best performance fold was chosen for the estab-
lishment of the best model. R-Squared equaled 0.8191, 

Fig. 4  Correlation of continuous variables

Table 4  Univariate and multivariate analysis

*** : P < 0.001, **: P < 0.01, *: P < 0.05

Variables OR (95%CI) P-value OR (95%CI) P-value

x 3.609 (2.52–5.17)  < 0.01**

y 1.931 (1.62–2.98)  < 0.01** 1.162(1.03–1.32)  < 0.01**

z 2.48 (1.89–3.22)  < 0.01**

w 1.694 (1.51–1.91)  < 0.01**

Tibial cut 2.855 (2.36–3.45)  < 0.01** 1.736(1.47–2.06)  < 0.01**

Femoral cut 4.499 (3.55–5.69)  < 0.01** 2.593(2.08–3.24)  < 0.01**

Post Condyle 2.809 (2.19–3.6)  < 0.01** 1.217(1–1.48)  < 0.01**
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which was close to 1 in the range of 0 and 1. The 
RMSE equaled 3.4761, which was acceptable in clinical 
practice.

Joint Gap calculation equation was as follows:

S(Joint Gap) = 1.82+0.15∗y+0.552∗Tibial cut+0.953∗Femoral cut+0.197∗Post Condyle

According to the aforementioned equation, a 2-D pre-
operative planning system was developed with adjustable 
parameters such as planned resection thicknesses and 
orientations of prosthesis, which may provide a rough 
prediction of joint gap based on surgeon-preset bone 
cutting (Fig. 6).

Postoperative parameters were demonstrated on the 
right panel. Osteophytes were identified automatically, 
and joint gap was calculated according to the predictive 
equation and preset bone cuts. Orientation and height of 
bone cuts can be adjusted.

Discussion
Preoperative planning is a good start for all surgical pro-
cedures. Analog films had been used for years before digi-
tal radiographs were introduced. Errors in magnification 
made planning on analog films inaccurate. Digital pre-
operative planning has been proven to be more accurate 
in hip and knee arthroplasties [11, 12]. However, issues, 
such as implant rotation and extraarticular deformities, 
remained unaddressed in 2D planning procedure [13–15]. 
Recently, 3D templating based on CT or MRI scan yielded 

Fig. 5  Univariate regression and multivariate regression. A The linear relationships between the predictors and Joint Gap. Residual and fitting 
values (B, upper left). Data points between residual and fitting values were evenly distributed on both sides of y = 0, showing a random distribution, 
and the red line presented a smooth curve. Residual Q-Q chart (B, upper right), data points were distributed diagonally in a straight line, conforming 
to normal distribution. Normalized residual square root and fitting value (B, bottom left), data points were evenly distributed on both sides of y = 0, 
showing a random distribution. Standardized residuals and leverage values (B, bottom right), with no outliers that affected the regression model

Table 5  Ten-fold cross-validation result of linear regression

a Fold 3 showed the best R-squared value, and was chosen for model 
establishment

Folds R-Squared RMSE MAE

1 0.7909 2.4680 2.2745

2 0.8112 3.413 2 2.1935

3a 0.8191 3.4761 2.1489
4 0.7757 2.0001 2.3061

5 0.7689 1.3435 2.3787

6 0.8062 3.4278 2.2121

7 0.8102 3.7062 2.1545

8 0.7872 2.7644 2.2485

9 0.7742 2.2820 2.3084

10 0.8006 3.9689 2.1762

All (Mean ± SD) 0.794 ± 0.02 2.8851 ± 0.85 2.2402 ± 0.08
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better accuracy in predicting implant size as compared 
to traditional 2D films [16]. Meanwhile, Kobayashi et  al. 
demonstrated the unnecessity of applying 3D templating 
before TKA, as their results failed to support the supe-
riority of the technique in predicting implant size pre-
operatively [17]. Robotic systems attained better results 
in alignment in TKA than individualized 3D planning, 
although the former is time-consuming and doesn’t pro-
duce superior PROMs than the latter [18]. Moreover, any 
additional technique rather than traditional 2D templat-
ing may incur additional cost or radiation exposure. We 
attempted to plan on plain films, with influence on soft 
tissues taken into account. To our knowledge, it was the 
first attempt to quantitatively determine soft tissue release 
on a 2-D planning system.

By using the aforementioned equation, if the amount 
of preoperative femoral and tibial cut is known, targeted 
joint gap can be calculated and serve as a reference to 
surgeons. It should be mentioned that not all dimen-
sions of osteophytes were involved in the equation. Only 
distance between tips of osteophyte protrusions signifi-
cantly affected posterior joint gap. Additionally, it is well-
known that the amount of bone cut will affect joint gap 
achieved, and, further, the thickness of tibial insert. This 
has been taken into account in the building of the model.

Machine learning has been widely used in medical 
fields and for preoperative planning of TKA, including 

implant size, position, economic analysis, outcome 
evaluation and patient/implant follow-ups [19–24]. 
Cross-validation is a method used for model and data-
set validation to estimate the out-of-sample error. It has 
become quite popular because of its simplicity and util-
ity [25, 26]. Ten-fold cross-validation performs the fit-
ting procedure a total of ten times, with each fit being 
performed on a training set consisting of 90% of the total 
training set selected at random, with the remaining 10% 
used as a holdout set for validation. In our study, we con-
ducted a ten-fold cross-validation by using the R soft-
ware to avoid sampling bias and it is an effective attempt 
to use the machine learning concept to deal with large 
samples.

Our study is subject to limitations. First, all data 
were reviewed retrospectively, while the sample size 
was relatively small. Loss of intraoperative information 
might bring sample bias to the study. We conducted a 
cross-validation of samples to minimize the influence of 
sample size. Secondly, Some factors, such as surgeons’ 
understanding about soft tissue balancing that might 
influence their maneuver or mis-handlings during 
operation, are not taken into consideration. Moreover, 
surgeons’ preference for balancing in TKA does influ-
ence the establishment of the model. We attempted to 
adjust parameters in the system to accommodate differ-
ent surgical preferences such as ligament balancing or 

Fig. 6  The software based on the predictive equation
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measurement resection in the published edition of our 
software. A prospective study with better design may 
be closer to real-world practice, and will improve the 
accuracy of planning. Implant variables were not con-
sidered in the model, either, because minimal variation 
in implant dimensions might not influence the results 
significantly. Last but not least, the equation we worked 
out may be useful in guiding preoperative planning but 
uncertainties in surgical procedures require the ability 
to respond flexibly during operation. A surgeon should 
take all possible factors into account preoperatively in 
order to perform a perfect surgery.

Conclusion
In this study, we have worked out an equation to pre-
dict the influence of preoperative radiographic ele-
ments on the soft tissue balancing before TKA, and 
a preoperative planning system has been developed. 
The computer-assisted method was proven use-
ful in generating a reliable equation. Further studies 
are warranted to modify and improve the model to 
achieve better results.
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